Advanced RAG Techniques
Retrieval Augmented Generation (RAG) is a powerful approach that enhances AI responses by retrieving relevant information from a knowledge base. This guide explores advanced techniques for implementing RAG with the Memory API.
Understanding Semantic Search
Section titled “Understanding Semantic Search”Semantic search goes beyond simple keyword matching to find content based on meaning and intent. When using the Memory API’s semantic search capabilities:
Optimizing RAG Queries
Section titled “Optimizing RAG Queries”To get the most out of semantic search with the Memory API, consider these optimization techniques:
1. Query Formulation
Section titled “1. Query Formulation”The way you phrase your search query significantly impacts results:
// Less effective queryconst basicQuery = "user preferences";
// More effective query with context and specificityconst enhancedQuery = "User preferences for interface customization and notification settings";More specific, contextual queries yield better results by providing clearer semantic intent.
2. Filtering with Metadata
Section titled “2. Filtering with Metadata”Combine semantic search with metadata filtering for more precise results:
// Semantic search with metadata filteringconst response = await fetch('https://api.example.com/memories/semantic-search', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY' }, body: JSON.stringify({ tenantId: "tenant-123", query: "User interface preferences", tags: ["preferences", "ui"], fromDate: "2023-01-01", limit: 5, minScore: 0.7 })});3. Adjusting Similarity Thresholds
Section titled “3. Adjusting Similarity Thresholds”The minScore parameter controls the minimum similarity threshold for results:
// Higher threshold for stricter matchingconst strictSearch = { query: "Dark mode preferences", minScore: 0.8 // Only very similar results};
// Lower threshold for broader matchingconst broadSearch = { query: "Dark mode preferences", minScore: 0.5 // More diverse results};Multi-Stage Retrieval
Section titled “Multi-Stage Retrieval”For complex queries, implement a multi-stage retrieval process:
- Initial Broad Search: Retrieve a larger set of potentially relevant memories
- Reranking: Apply additional criteria to rank the initial results
- Filtering: Remove irrelevant or redundant information
// Example of multi-stage retrievalasync function multiStageRetrieval(query, tenantId) { // Stage 1: Initial broad search const initialResponse = await fetch('https://api.example.com/memories/semantic-search', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY' }, body: JSON.stringify({ tenantId, query, minScore: 0.5, limit: 20 }) });
const initialResults = await initialResponse.json();
// Stage 2: Reranking (example: prioritize recent memories) const reranked = initialResults.memories.sort((a, b) => { // Sort by recency and relevance const recencyScore = (new Date(b.createdAt) - new Date(a.createdAt)) / (1000 * 60 * 60 * 24); return (b.score * 0.7) + (recencyScore * 0.3) - (a.score * 0.7) - (recencyScore * 0.3); });
// Stage 3: Filtering (example: remove duplicates) const uniqueContent = new Set(); const filtered = reranked.filter(memory => { const isDuplicate = uniqueContent.has(memory.content); uniqueContent.add(memory.content); return !isDuplicate; });
return filtered.slice(0, 5); // Return top 5 after processing}Hybrid Search Approaches
Section titled “Hybrid Search Approaches”Combine different search methods for more robust results:
Entity-Based + Semantic Search
Section titled “Entity-Based + Semantic Search”async function hybridSearch(query, entityId, tenantId) { // Get entity-related memories const entityResponse = await fetch(`https://api.example.com/entities/${entityId}/memories`, { headers: { 'Authorization': 'Bearer YOUR_API_KEY' } }); const entityMemories = await entityResponse.json();
// Get semantically similar memories const semanticResponse = await fetch('https://api.example.com/memories/semantic-search', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY' }, body: JSON.stringify({ tenantId, query, minScore: 0.7 }) }); const semanticMemories = await semanticResponse.json();
// Combine and deduplicate results const allMemories = [...entityMemories.memories, ...semanticMemories.memories]; const uniqueMemories = Array.from(new Map(allMemories.map(m => [m.id, m])).values());
return uniqueMemories;}Context Building Strategies
Section titled “Context Building Strategies”Effective RAG isn’t just about retrieval—it’s about building coherent context:
1. Chronological Ordering
Section titled “1. Chronological Ordering”Order memories chronologically to maintain narrative coherence:
const orderedMemories = memories.sort((a, b) => new Date(a.createdAt) - new Date(b.createdAt));2. Relevance Weighting
Section titled “2. Relevance Weighting”Weight memories by relevance to the current query:
const weightedContext = memories.map(memory => ({ content: memory.content, weight: memory.score // Similarity score from semantic search}));3. Entity-Centric Context
Section titled “3. Entity-Centric Context”Build context around specific entities:
async function buildEntityContext(entityId) { // Get entity details const entityResponse = await fetch(`https://api.example.com/entities/${entityId}`, { headers: { 'Authorization': 'Bearer YOUR_API_KEY' } }); const entity = await entityResponse.json();
// Get related memories const memoriesResponse = await fetch(`https://api.example.com/entities/${entityId}/memories`, { headers: { 'Authorization': 'Bearer YOUR_API_KEY' } }); const memories = await memoriesResponse.json();
// Get related entities const relationsResponse = await fetch(`https://api.example.com/entities/${entityId}/relationships`, { headers: { 'Authorization': 'Bearer YOUR_API_KEY' } }); const relations = await relationsResponse.json();
// Combine into rich context return { entity, memories: memories.memories, relations: relations.relationships };}Performance Optimization
Section titled “Performance Optimization”Optimize your RAG implementation for better performance:
- Cache frequent queries: Store results for common queries to reduce processing time
- Batch related requests: Combine multiple related queries into a single request
- Progressive loading: Retrieve essential information first, then load additional details as needed
Best Practices for RAG Implementation
Section titled “Best Practices for RAG Implementation”- Start simple: Begin with basic semantic search before implementing advanced techniques
- Test with real queries: Evaluate performance with actual user queries, not just theoretical examples
- Iterate based on feedback: Continuously refine your approach based on the quality of results
- Balance precision and recall: Adjust thresholds to find the right balance for your use case
- Monitor performance: Track key metrics like response time and relevance to identify areas for improvement
Congratulations!
Section titled “Congratulations!”You’ve completed the Memory API learning path! You now have a comprehensive understanding of:
- Creating and managing different types of memories
- Retrieving memories efficiently using various methods
- Working with entities and their relationships
- Implementing advanced RAG techniques for better context
With these skills, you’re well-equipped to build sophisticated AI applications that leverage the power of the Memory API for enhanced context and knowledge management.